
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-Performance Embedded Programming Fall 2023

1 Instructor: Daniel Llamocca

Midterm Exam
(October 19th @ 7:30 pm)

▪ Implement SAXPY (Single-Precision A.X Plus Y), also called Scaled Vector Addition with both pthreads and TBB.

�⃗� ← 𝑎�⃗� + �⃗�

✓ SAXPY is a combination of scalar multiplication and vector addition. It takes as input two n-element input vectors �⃗� and

�⃗� (whose elements are 32-bit floating point numbers), and a scalar value 𝑎. A simple C implementation looks like this:

void saxpy(int n, float a, float *x, float *y) {

 for (int i = 0; i < n; i++)

 y[i] = a*x[i] + y[i];

}

PROBLEM 1 (60 PTS)
▪ Implement SAXPY using pthreads in C (30 pts)

✓ Your code should read the parameter nthreads (number of threads) and the length of the vectors (n).

 Note that nthreads [1, n].

✓ Parallelization: each thread i (i [1, n]) computes a slice of the output vector �⃗� with the following indices:

 From ⌊
𝑖×𝑛

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠
⌋ to ⌊

(𝑖+1)×𝑛

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠
⌋.

✓ Input data: Given the length n, your code should initialize the vectors �⃗� and �⃗� as per the following pseudo-code:
a = 1.618

for i = 0:n-1

 x[i] = sinh(i*3.416/n); y[i] = cosh(i*3.416/n);

✓ Verification: To be fully sure that your results are correct, you need to create a sequential implementation and then
compare the results with those of your multi-threaded implementation. This can be achieved by computing the sum of
absolute differences (SAD), which should be 0.0:

𝑑𝑖𝑓𝑓 = ∑|𝑦𝑝(𝑖) − 𝑦𝑠(𝑖)|

𝑛−1

𝑖=0

where �⃗�𝑝 and �⃗�𝑠 are the output vectors of the multi-threaded and sequential implementations respectively.

▪ Compile the code and execute the application on the DE2i-150 Board. Complete Table I (take an average of ~10 executions

in order to get the computation time for each case). (20 pts).
✓ Example: ./mysaxpy 1000 10

 It will compute SAXPY on 1000-element vectors �⃗� and �⃗� using 10 threads.

TABLE I. COMPUTATION TIME (US) VS. NUMBER OF THREADS AND VECTORS LENGTH

 nthreads

n 1 2 3 4 5 6 7 8 9 10

1,000

10,000

100,000

1,000,000

2,000,000

✓ Comment on your results in Table I. Is there an optimal number of threads? At what point increasing the number of

threads causes an increase in processing time?

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-Performance Embedded Programming Fall 2023

2 Instructor: Daniel Llamocca

▪ Take (and attach) a screenshot of the software running in the terminal for nthreads=5, n=20. It should show the computation

times (for both the sequential and the pthreads implementations), the input vectors �⃗� and �⃗�, the output vector �⃗�, and the

sum of absolute differences (SAD). Fig. 1 shows an execution example. (10 pts)

PROBLEM 2 (40 PTS)
▪ Implement SAXPY using TBB parallel_for in C++ (15 pts)

✓ Follow the same procedure as in Problem 1, but instead of using pthreads to implement slices of the output vector, use

parallel_for to fully parallelize the sequential SAXPY. Make sure to include a sequential implementation in C++.

✓ Your code should read the parameter input data set size (n).

▪ Compile the code and execute the application on the DE2i-150 Board. Complete Table II (take an average of ~10 executions

for each case). (15 pts)
✓ Example: ./mysaxpy_tbb 1000

 It will compute SAXPY on 1000-element vectors �⃗� and �⃗�.

TABLE II. COMPUTATION TIME (US) VS. VECTORS LENGTH

Implementation

n

10,000 100,000 1,000,000 2,000,000 5,000,000

Sequential

TBB

✓ Comment on your Table II results. Is there any point at which the TBB implementation is faster than the sequential one?

Yes or No? If No, can you venture a guess as to why this is happening?

▪ Take (and attach) a screenshot of the software running in the terminal for n=20. It should show the computation times (both

sequential and the TBB implementations), the input vectors �⃗� and �⃗�, the output vector �⃗� and the SAD (as in Fig. 1). (10 pts)

Figure 1. SAXPY execution showing three 20-element sets of values. Computation times obtained from execution on a Dell Inspiron laptop.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-Performance Embedded Programming Fall 2023

3 Instructor: Daniel Llamocca

SUBMISSION
▪ Demonstration: In this Midterm, the requested screenshots of the software routines running in the Terminal suffices.

▪ Submit to Moodle (an assignment will be created):

✓ Two .zip files (one for Problem 1 and one for Problem 2).
 Problem 1: The .zip file must contain the source files (.c, .h, Makefile).

 Problem 2: The .zip file must contain the source files (.cpp, .h, Makefile).

✓ Your Midterm work (a PDF file): This must include the completed Tables I and II, your comments, as well as the requested
screenshots (2).

	Problem 1 (60 pts)
	Problem 2 (40 pts)
	Submission

