Midterm Exam

(October 19th @ 7:30 pm)

• Implement SAXPY (Single-Precision A.X Plus Y), also called Scaled Vector Addition with both *pthreads* and TBB.

```
\vec{y} \leftarrow a\vec{x} + \vec{y}
```

✓ SAXPY is a combination of scalar multiplication and vector addition. It takes as input two *n*-element input vectors \vec{x} and \vec{y} (whose elements are 32-bit floating point numbers), and a scalar value *a*. A simple C implementation looks like this:

```
void saxpy(int n, float a, float *x, float *y) {
  for (int i = 0; i < n; i++)
      y[i] = a*x[i] + y[i];
}</pre>
```

PROBLEM 1 (60 PTS)

- Implement SAXPY using *pthreads* in C (30 pts)
 - ✓ Your code should read the parameter *nthreads* (number of threads) and the length of the vectors (*n*). • Note that *nthreads* $\in [1, n]$.
 - ✓ Parallelization: each thread *i* (*i* ∈ [1, *n*]) computes a slice of the output vector \vec{y} with the following indices:

```
• From \left\lfloor \frac{i \times n}{n threads} \right\rfloor to \left\lfloor \frac{(i+1) \times n}{n threads} \right\rfloor.
```

✓ **Input data**: Given the length *n*, your code should initialize the vectors \vec{x} and \vec{y} as per the following pseudo-code: a = 1.618 for i = 0:n-1

```
x[i] = sinh(i*3.416/n); y[i] = cosh(i*3.416/n);
```

Verification: To be fully sure that your results are correct, you need to create a sequential implementation and then compare the results with those of your multi-threaded implementation. This can be achieved by computing the sum of absolute differences (SAD), which should be 0.0:

$$diff = \sum_{i=0}^{n-1} \left| y_p(i) - y_s(i) \right|$$

where \vec{y}_p and \vec{y}_s are the output vectors of the multi-threaded and sequential implementations respectively.

Compile the code and execute the application on the DE2i-150 Board. Complete Table I (take an average of ~10 executions in order to get the computation time for each case). (20 pts).

✓ Example: ./mysaxpy 1000 10

• It will compute SAXPY on 1000-element vectors \vec{x} and \vec{y} using 10 threads.

	nthreads									
п	1	2	3	4	5	6	7	8	9	10
1,000										
10,000										
100,000										
1,000,000										
2,000,000										

Comment on your results in Table I. Is there an optimal number of threads? At what point increasing the number of threads causes an increase in processing time?

• Take (and attach) a screenshot of the software running in the terminal for *nthreads*=5, *n*=20. It should show the computation times (for both the sequential and the *pthreads* implementations), the input vectors \vec{x} and \vec{y} , the output vector \vec{y} , and the sum of absolute differences (SAD). Fig. 1 shows an execution example. (10 pts)

	s (SAD). Fig. 1 shows an	execution example. (10 pts)					
😣 🗖 🗖 🛛 daniel@@	daniel-Inspiron-1545: ~/Dro	opbox/mystuff/work_ubuntu/labs/midterm/saxpy_pthreads					
x(input)	y(input)	y(output)					
x[0]=0.0000	y[0]=1.0000	y[0]=1.0000					
x[1]=0.1716	y[1]=1.0146	y[1]=1.2923					
x[2]=0.3483	y[2]=1.0589	y[2]=1.6224					
x[3]=0.5351	y[3]=1.1342	y[3]=2.0000					
x[4]=0.7376	y[4]=1.2426	y[4]=2.4360					
x[5]=0.9617	y[5]=1.3874	y[5]=2.9433					
x[6]=1.2138	y[6]=1.5727	y[6]=3.5367					
x[7]=1.5015	y[7]=1.8040	y[7]=4.2335					
x[8]=1.8331	y[8]=2.0881	y[8]=5.0541					
x[9]=2.2183	y[9]=2.4333	y[9]=6.0224					
x[10]=2.6683	y[10]=2.8496	y[10]=7.1670					
x[11]=3.1964	y[11]=3.3492	y[11]=8.5210					
x[12]=3.8180	y[12]=3.9468	y[12]=10.1243					
x[13]=4.5512	y[13]=4.6598	y[13]=12.0237					
x[14]=5.4175	y[14]=5.5091	y[14]=14.2746					
x[15]=6.4423	y[15]=6.5194	y[15]=16.9430					
x[16]=7.6554	y[16]=7.7205	y[16]=20.1069					
x[17]=9.0924	y[17]=9.1473	y[17]=23.8588					
x[18]=10.7953	y[18]=10.8416	y[18]=28.3084					
x[19]=12.8139	y[19]=12.8529	y[19]=33.5859					
Sum of absolute	differences: 0.0000						
Time measuremen							

pthreads implementation - nthreads = 10							
start: 555010 us end: 555766 us							
Elapsed time: 756 us							
Sequential implementation							
start: 556037 us end: 556038 us							
Elapsed time: 1 us							
daniel@daniel-Inspiron-1545:~/Dropbox/mystuff/work_ubuntu/labs/midterm/saxpy_pthreads\$							

Figure 1. SAXPY execution showing three 20-element sets of values. Computation times obtained from execution on a Dell Inspiron laptop.

PROBLEM 2 (40 PTS)

- Implement SAXPY using TBB parallel_for in C++ (15 pts)
 - ✓ Follow the same procedure as in Problem 1, but instead of using *pthreads* to implement slices of the output vector, use *parallel_for* to fully parallelize the sequential SAXPY. Make sure to include a sequential implementation in C++.
 - ✓ Your code should read the parameter input data set size (n).
- Compile the code and execute the application on the DE2i-150 Board. Complete Table II (take an average of ~10 executions for each case). (15 pts)
 - ✓ Example: ./mysaxpy_tbb 1000
 - It will compute SAXPY on 1000-element vectors \vec{x} and \vec{y} .

1

TABLE II. COMPUTATION TIME (US)	VS. VECTORS LENGTH
---------------------------------	--------------------

	<u>n</u>					
Implementation	10,000	100,000	1,000,000	2,000,000	5,000,000	
Sequential						
TBB						

- Comment on your Table II results. Is there any point at which the TBB implementation is faster than the sequential one? Yes or No? If No, can you venture a guess as to why this is happening?
- Take (and attach) a screenshot of the software running in the terminal for n=20. It should show the computation times (both sequential and the TBB implementations), the input vectors x and y, the output vector y and the SAD (as in Fig. 1). (10 pts)

SUBMISSION

- Demonstration: In this Midterm, the requested screenshots of the software routines running in the Terminal suffices.
- Submit to Moodle (an assignment will be created):
 - \checkmark Two <u>.zip</u> files (one for Problem 1 and one for Problem 2).
 - Problem 1: The .zip file must contain the source files (.c, .h, Makefile).
 - Problem 2: The .zip file must contain the source files (.cpp, .h, Makefile).
 - ✓ Your Midterm work (a PDF file): This must include the completed Tables I and II, your comments, as well as the requested screenshots (2).