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1 Instructor: Daniel Llamocca 

Midterm Exam 
(October 19th @ 7:30 pm) 

 

▪ Implement SAXPY (Single-Precision A.X Plus Y), also called Scaled Vector Addition with both pthreads and TBB. 

�⃗� ← 𝑎�⃗� + �⃗� 

✓ SAXPY is a combination of scalar multiplication and vector addition. It takes as input two n-element input vectors �⃗� and 

�⃗� (whose elements are 32-bit floating point numbers), and a scalar value 𝑎. A simple C implementation looks like this: 

void saxpy(int n, float a, float *x, float *y) { 

  for (int i = 0; i < n; i++) 

      y[i] = a*x[i] + y[i]; 

} 

 

PROBLEM 1 (60 PTS) 
▪ Implement SAXPY using pthreads in C (30 pts) 

✓ Your code should read the parameter nthreads (number of threads) and the length of the vectors (n). 

 Note that nthreads  [1, n]. 

✓ Parallelization: each thread i (i  [1, n]) computes a slice of the output vector �⃗� with the following indices: 

 From ⌊
𝑖×𝑛

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠
⌋ to ⌊

(𝑖+1)×𝑛

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠
⌋. 

 

✓ Input data: Given the length n, your code should initialize the vectors �⃗� and �⃗� as per the following pseudo-code:  
a = 1.618 

for i = 0:n-1 

   x[i] = sinh(i*3.416/n);   y[i] = cosh(i*3.416/n); 

 

✓ Verification: To be fully sure that your results are correct, you need to create a sequential implementation and then 
compare the results with those of your multi-threaded implementation. This can be achieved by computing the sum of 
absolute differences (SAD), which should be 0.0: 

𝑑𝑖𝑓𝑓 = ∑|𝑦𝑝(𝑖) − 𝑦𝑠(𝑖)|

𝑛−1

𝑖=0

 

where �⃗�𝑝 and �⃗�𝑠 are the output vectors of the multi-threaded and sequential implementations respectively. 

 
▪ Compile the code and execute the application on the DE2i-150 Board. Complete Table I (take an average of ~10 executions 

in order to get the computation time for each case). (20 pts). 
✓ Example: ./mysaxpy 1000 10 

 It will compute SAXPY on 1000-element vectors �⃗� and �⃗� using 10 threads. 

 
TABLE I. COMPUTATION TIME (US) VS. NUMBER OF THREADS AND VECTORS LENGTH 

 nthreads 

n 1 2 3 4 5 6 7 8 9 10 

1,000 
          

10,000 
          

100,000 
          

1,000,000 
          

2,000,000 
          

 
✓ Comment on your results in Table I. Is there an optimal number of threads? At what point increasing the number of 

threads causes an increase in processing time? 
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▪ Take (and attach) a screenshot of the software running in the terminal for nthreads=5, n=20. It should show the computation 

times (for both the sequential and the pthreads implementations), the input vectors �⃗� and �⃗�, the output vector �⃗�, and the 

sum of absolute differences (SAD). Fig. 1 shows an execution example. (10 pts) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PROBLEM 2 (40 PTS) 
▪ Implement SAXPY using TBB parallel_for in C++ (15 pts) 

✓ Follow the same procedure as in Problem 1, but instead of using pthreads to implement slices of the output vector, use 

parallel_for to fully parallelize the sequential SAXPY. Make sure to include a sequential implementation in C++. 

✓ Your code should read the parameter input data set size (n). 

 
▪ Compile the code and execute the application on the DE2i-150 Board. Complete Table II (take an average of ~10 executions 

for each case). (15 pts) 
✓ Example: ./mysaxpy_tbb 1000 

 It will compute SAXPY on 1000-element vectors �⃗� and �⃗�. 

 
TABLE II. COMPUTATION TIME (US) VS. VECTORS LENGTH 

Implementation 

n 

10,000 100,000 1,000,000 2,000,000 5,000,000 

Sequential      

TBB      

 
✓ Comment on your Table II results. Is there any point at which the TBB implementation is faster than the sequential one? 

Yes or No? If No, can you venture a guess as to why this is happening? 
 

 

 

 

 

 

▪ Take (and attach) a screenshot of the software running in the terminal for n=20. It should show the computation times (both 

sequential and the TBB implementations), the input vectors �⃗� and �⃗�, the output vector �⃗� and the SAD (as in Fig. 1). (10 pts) 

Figure 1. SAXPY execution showing three 20-element sets of values. Computation times obtained from execution on a Dell Inspiron laptop. 
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SUBMISSION 
▪ Demonstration: In this Midterm, the requested screenshots of the software routines running in the Terminal suffices. 
 
▪ Submit to Moodle (an assignment will be created): 

✓ Two .zip files (one for Problem 1 and one for Problem 2). 
 Problem 1: The .zip file must contain the source files (.c, .h, Makefile). 

 Problem 2: The .zip file must contain the source files (.cpp, .h, Makefile). 

✓ Your Midterm work (a PDF file): This must include the completed Tables I and II, your comments, as well as the requested 
screenshots (2). 
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